INTEGRATED CIRCUITS

DATA SHEET

TDA3567NTSC decoder

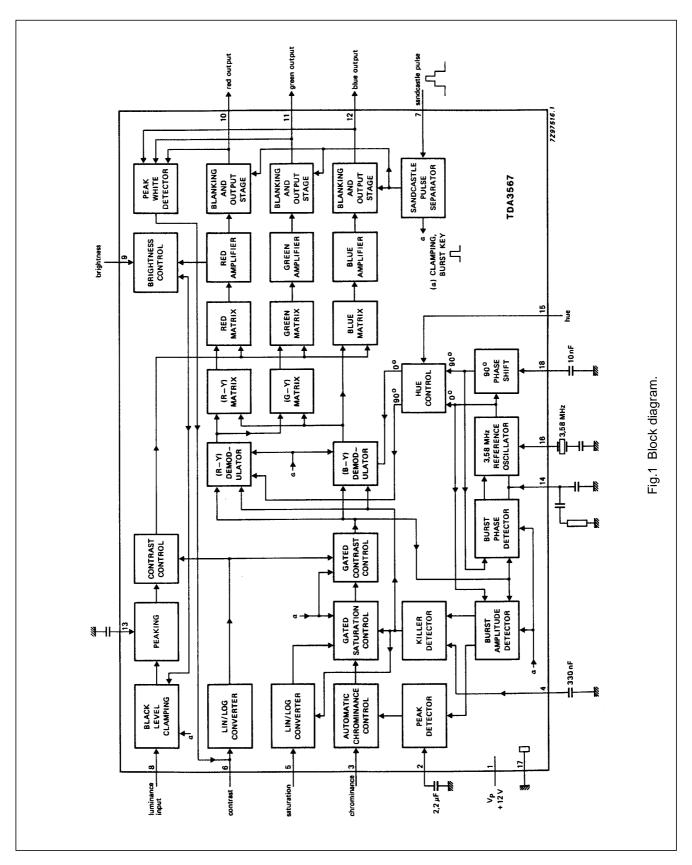
Product specification
File under Integrated Circuits, IC02

June 1986

NTSC decoder TDA3567

GENERAL DESCRIPTION

The TDA3567 is a monolithic integrated decoder for the NTSC colour television standards. It combines all functions required for the demodulation of NTSC signals. Further more it contains a luminance amplifier, an RGB-matrix and amplifier. These amplifiers supply output signals up to 5 V peak-to-peak (picture information) enabling direct drive of the discrete output stages.


QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	pin 1	$V_P = V_{1-17}$	9	12	13,2	V
Supply current	pin 1	$I_P = I_1$	_	65	_	mA
Luminance input signal	pin 8					
Input voltage						
(peak-to-peak value)		V _{8-17(p-p)}	_	0,45	_	V
Contrast control range			_	20	_	dB
Chrominance amplifier	pin 3					
Input voltage						
(peak-to-peak value)		V _{3-17(p-p)}	_	550	_	mV
Saturation control range			50	_	_	dB
RGB matrix and amplifiers						
Output voltage at nominal						
luminance input signal						
and nominal contrast						
(peak-to-peak value)		V _{10,11,12-17(p-p)}	4,0	5,0	6,0	V
Sandcastle input	pin 7					
Blanking input voltage		V ₇₋₁₇	1,0	1,5	2,0	V
Burst gating and clamping						
input voltage		V _{7-17(p-p)}	6,5	7,0	7,5	V

PACKAGE OUTLINE

18-lead DIL; plastic, with internal heatspreader (SOT102-1); SOT102-1; 1996 November 25.

NTSC decoder TDA3567

NTSC decoder TDA3567

FUNCTIONAL DESCRIPTION

Luminance amplifier

The luminance amplifier is voltage driven and requires an input signal of 450 mV peak-to-peak ⁽¹⁾ The luminance delay line must be connected between the i.f. amplifier and the decoder. The input signal must be a.c. coupled to the input pin 8.

The black level clamp circuit of the RGB amplifiers uses the coupling capacitor as a storage capacitor. After clamping the signal is fed to a peaking stage. The RC network connected to pin 13 is used to define the amount of overshoot.

The peaking stage is followed by a contrast control stage. The control voltage has to be supplied to pin 6. The control voltage range is nominally -17 to +3 dB. The linear curve of the contrast control voltage is shown in Fig.2.

Chrominance amplifier

The chrominance amplifier has an asymmetrical input. The input signal at pin 3 must be a.c. coupled, and must have an amplitude of 550 mV peak-to-peak. The gain control stage has a control range in excess of 30 dB, the maximum input signal should not exceed 1,1 V peak-to-peak, otherwise clipping of the input signal will occur. From the gain control stage the chrominance signal is fed to the saturation and contrast control stages. Chrominance and luminance control stages are directly coupled to obtain good tracking. The saturation is linearly controlled via pin 5. The control voltage range is 2 V to 4 V. The impedance is high and the saturation control range is in excess of 50 dB. The burst signal is not affected by contrast or saturation control. After the amplification and control stages the chrominance signal is internally fed to the (R-Y) and (B-Y) demodulators, burst phase and a.c.c. detectors.

Oscillator and a.c.c. circuit

The 3,58 MHz reference oscillator operates at the subcarrier frequency. The crystal must be connected between pin 16 and ground. The oscillator does not require adjustment due to the small spreads of the IC. The free running frequency of the oscillator can be checked by connecting the saturation control (pin 5) to the positive supply line. Then the loop is opened, so that the frequency can be measured. The oscillator has an internal gain limiting stage which controls the gain to unity, so that internal signals are sinusoidal. This prevents the generation of higher harmonics of the subcarrier signals. The burst signal is compared to a 0° reference signal by the burst amplitude detector and is then amplified and fed to a peak detector for a.c.c. and to a sample and hold circuit which drives the colour killer circuit. The reference signal for the burst phase detector is provided by the 90° phase shifted signal. An RC network is used to obtain the required catching range and noise immunity for the output voltage of the burst phase detector.

The hue control is obtained by mixing oscillator signals with a phase of 0° and 90° before they are fed to the (R-Y) and (B-Y) demodulators. The 90° phase shifted signal is provided by a miller integrator (biased by pin 18). As the hue control is independent of the PLL, the control will react without time delay on the control voltage changes.

Demodulator circuits

The demodulators are driven by the amplified and controlled chrominance signals, the reference signals are obtained from the hue control circuit. In nominal hue control position the phase angle of (R-Y) reference signal is 0°, the phase angle of the (B-Y) reference signal is 90°.

For flesh tone corrections the demodulated (R-Y) signal is matrixed with the demodulated (B-Y) signal according to the following equations:

$$(R-Y)_{matrixed} = 1,61 (R-Y)_{IN} - 0,42 (B-Y)_{IN}$$

 $(G-Y)_{matrixed} = 0,43 (R-Y)_{IN} - 0,11 (B-Y)_{IN}$
 $(B-Y)_{matrixed} = (B-Y)_{IN}$

(1) Signal with negative going sync; amplitude includes sync pulse amplitude.

NTSC decoder TDA3567

In these equations $(R-Y)_{IN}$ and $(B-Y)_{IN}$ indicate the colour difference signal amplitudes, when the chrominance signal is demodulated with a phase difference between the R-Y and B-Y demodulator of 90° and a gain ratio B-Y/R-Y = 1,78.

RGB matrix circuit and amplifiers

The three matrix and amplifier circuits are identical. The luminance signal and the colour difference signals are added in the matrix circuit to obtain the colour signal.

Output signals are 5 V (peak-to-peak) (black-white) for the following nominal input signals and control settings.

- Luminance 450 mV (peak-to-peak)
- Chrominance 550 mV (peak-to-peak) (burst-to-chrominance ratio of the input 1:2.2)
- Contrast -3 dB (maximum)
- Saturation -10 dB (maximum)

The maximum available output voltage is approximately 7 V (peak-to-peak). The black level of the red channel is compared with a variable external reference level (pin 9), which provides the brightness control. The control loop is closed via the luminance input.

The luminance input is varied to control the black level control, therefore the green and blue outputs will follow any variation of the red output. The output of the black control can be varied between 2 V to 4 V. The corresponding brightness control voltage is shown in Fig.4.

If the output signal surpasses the level of 9 V the peak-white limiter circuit becomes active and reduces the output signal via the contrast control.

Blanking of RGB signals

A slicing level of about 1,5 V is used for this blanking function, so that the wide part of the sandcastle pulse is separated from the rest of the pulse. During blanking a level of + 2 V is available at the output.

NTSC decoder TDA3567

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 1)	$V_P = V_{1-17}$	max.	13,2	V
Total power dissipation	P _{tot}	max.	1,7	W
Storage temperature range	T_{stg}	-25 to	+ 150	° C
Operating ambient temperature range	T_{amb}	-25 to	+ 65	° C

THERMAL RESISTANCE

From junction to ambient (in free air) $R_{th j-a} = 50 ext{ K/W}$

CHARACTERISTICS

 $V_P = V_{1-17}$ =12 V; T_{amb} = 25 °C; unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply						
Supply voltage		$V_P = V_{1-17}$	9	12	13,2	V
Supply current		$I_P = I_1$	_	65	_	mA
Total power dissipation		P _{tot}	_	0,78	_	W
Luminance input signal						
Input voltage	note 1					
(peak-to-peak value)	pin 8	V _{8-17(p-p)}	_	450	_	mV
Input voltage level before						
clipping occurs in the						
input stage		V ₈₋₁₇	_	_	1	V
Input current		I ₈	_	0,15	1,0	μΑ
Contrast control range	see Fig.2		-17	_	+3	dB
Input current contrast						
control	for V ₆₋₁₇ < 6 V	I ₇	_	0,5	15	μΑ
Input current when the						
peak-white limiter						
is active	$V_{6-17} = 2,5 \text{ V}$	I ₇	_	5,5	-	mA
Input resistance	V ₆₋₁₇ > 6 V	R ₇₋₁₇	1,4	2,0	2,6	kΩ
Peaking of luminance signal						
Output impedance	pin 13	Z ₁₃₋₁₇	_	200	_	Ω
Ratio of internal/external						
current when pin 13 is						
short-circuited				3	_	

NTSC decoder TDA3567

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Chrominance amplifier						
Input signal amplitude	note 2					
(peak-to-peak value)	pin 3	V _{3-17(p-p)}	_	550	_	mV
Input signal amplitude						
before clipping occurs						
in the input stage						
(peak-to-peak value)		V _{3-17(p-p)}	_	_	1,1	V
Minimum burst signal		,				
amplitude within the						
a.c.c. control range						
(peak-to-peak)			35	_	_	mV
A.C.C. control range			30	_	_	dB
Change of the burst signal						
at the output for the						
complete control range		ΔV	_	_	+1	dB
Input impedance	pin 3	Z ₃₋₁₇	6	8	10	kΩ
Input capacitance	pin 3	C ₃₋₁₇	_	4	6	pF
Saturation control range	see Fig.3		50	_	_	dB
Input current saturation						
control	for V ₅₋₁₇ > 6 V	I ₅	_	1	20	μΑ
Input impedance	V ₅₋₁₇ = 6 V					
	to 10 V	Z ₅₋₁₇	1,4	2,0	2,6	kΩ
Input impedance when the						
colour killer is active		Z ₅₋₁₇	1,4	2,0	2,6	kΩ
Input impedance	for V ₅₋₁₇ > 10 V	Z ₅₋₁₇	0,7	1,0	1,3	kΩ
Tracking between luminance						
and chrominance contrast	for 10 dB of					
	control		_	1	2	dB
Cross coupling between						
luminance and						
chrominance amplifier	note 4		_	-50	-46	dB

NTSC decoder TDA3567

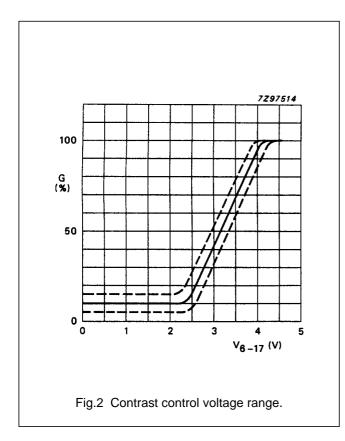
PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Reference part						
Phase locked loop						
Catching range		Δf	± 400	± 500	_	Hz
Phase shift for 400 Hz						
deviation of the carrier						
frequency		Δ	_	_	5	deg
Oscillator						
Temperature coefficient of						
oscillator frequency		TC _{osc}	_	1,5	2,5	Hz/K
Frequency deviation	$\Delta V_P = \pm 10\%$	Δf_{osc9}	_	150	250	Hz
Input resistance	pin 16	R ₁₆₋₁₇	260	360	460	Ω
Input capacitance	pin 16	C ₂₂₋₁₇	_	_	10	pF
A.C.C. generation						
Voltage at pin 4 nominal						
input signal		V ₄₋₁₇	_	4,0	_	V
Voltage at pin 4 without						
burst input		V ₄₋₁₇	_	1,9	_	V
Colour-off voltage		V ₄₋₁₇	_	2,5	_	V
Colour-on voltage		V ₄₋₁₇	_	2,8	_	V
Change in burst amplitude						
with temperature			_	0,1	-	%/K
Change in burst amplitude						
with 10% supply						
voltage change			_	0	-	%/V
Voltage at pin 2 at						
nominal input signal		V ₂₋₁₇	-	5,0	-	V
Hue control						
Control voltage range			s	ee Fig.5		
Input current	for V ₁₅₋₁₇ < 5 V	I ₁₄	_	0,5	20	μΑ
Input impedance	for $V_{15-17} > 5 V$	Z ₁₄₋₁₇	1,5	2,5	3,5	kΩ

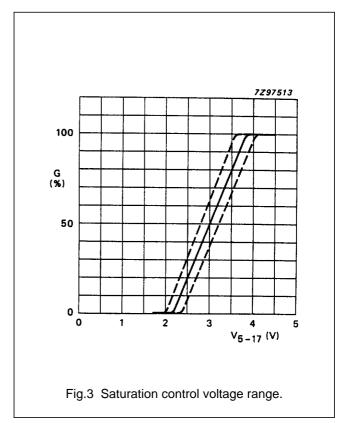
NTSC decoder TDA3567

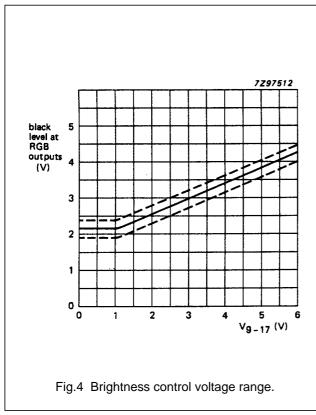
PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Demodulation part						
Ratio of demodulation						
signals (measured at the						
various outputs)	note 7					
(R-Y)/(B-Y); no (R-Y) signal		V ₁₀₋₁₇	_	-0,42	_	
		$\frac{V_{10-17}}{V_{12-17}}$				
(R-Y)/(B-Y); colour bar signal		V ₁₀₋₁₇	_	1,4	_	
		V_{12-17}				
		.2				
(G-Y)/(R-Y); no (B-Y) signal		$\frac{V_{11-17}}{V_{12-17}}$	_	-0,25	-	
		V _{12 - 17}				
(G-Y)/(B-Y); no (R-Y) signal		V _{11 - 17}	_	-0,11	_	
		$\frac{V_{11-17}}{V_{12-17}}$				
Frequency response	0 to 0,7 MHz		_	_	-3	dB
RGB matrix and amplifier						
Output signal amplitude	at nominal	V _{10,11,12-17(p-p)}	4,0	5,0	6,0	V
	luminance input signal and nominal					
	contrast (peak-to-					
	peak value)					
	note 3 black-white					
Output signal amplitude of the	at nominal	V _{12-17(p-p)}	_	3,8	_	V
"blue" channel	contrast and	* 12-17(p-p)		0,0		
	saturation control					
	setting and no luminance signal					
	to the input (B-Y)					
	signal (peak-to-					
Maximum peak-white level	peak value) note 6	V	9,0	9,3	9,6	V
Maximum output current	note 6	V _{10,11,12-7}	9,0	9,3	10	mA
Difference in the black		I _{10,11,12-17}			'	
level between the			_	_	600	mV
three channels						
Black level shift with						
vision content			_	10	40	mV
Brightness control voltage						
range			S	ee Fig.4		

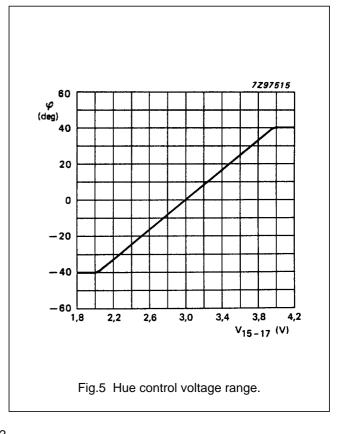
NTSC decoder TDA3567

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Brightness control input						
current		l ₉	_	_	-50	μΑ
Black level variation with						
temperature		V/T	_	0,15	1,0	mV/K
Black level variation with						
contrast control		ΔV	_	75	200	mV
Relative spread between the						
three output signals			_	-	10	%
Relative variation in black level between the three channels	during variations of contrast (10 dB), brightness (± 1 V), and supply voltage (± 10%)	ΔV	_	0	20	mV
Differential drift of black						
level over a temperature range of 40 °C		ΔV	_	0	20	mV
Blanking level at the RGB						
outputs		V _{b1}	1,95	2,15	2,35	V
Tracking of output black levels with supply voltage		$\frac{\Delta V_{b1}}{V_{b1}} \times \frac{V_p}{\Delta V_p}$	1,0	1,05	1,1	
Signal-to-noise ratio of						
output signals Residual 3,58 MHz in RGB outputs (peak-to-peak	note 5	S/N	62	_	_	dB
value)		$V_{R(p-p)}$	_	50	75	mV
Residual 7,1 MHz and higher harmonics in the RGB outputs (peak-to-peak value)		$V_{R(p-p)}$	_	50	75	mV
RGB output impedance		 Z _{10,11,12-17}	_	_	50	
Frequency response of total						
luminance and RGB amplifier circuits	0 to 5 MHz		_	_	-3	dB

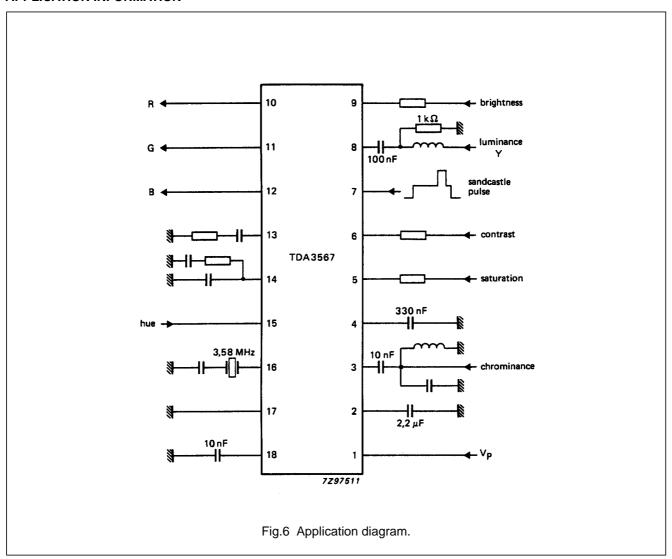

NTSC decoder TDA3567


PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Sandcastle input						
Level at which the RGB						
blanking is activated		V ₇₋₁₇	1,0	1,5	2,0	V
Level at which burst gate						
clamping pulses are separated		V ₇₋₁₇	6,5	7,0	7,5	V
Delay between black level						
clamping and burst gating pulse		l t _d	300	375	450	ns
Input currents	$V_{7-17} = 0 \text{ to } 1 \text{ V}$	I ₇	_	_	- 1	mA
	$V_{7-17} = 1 \text{ to } 8,5 \text{ V}$ $V_{7-17} = 8,5 \text{ to } 12 \text{ V}$	I ₇	_	-20	-40	μΑ
	$V_{7-17} = 8.5 \text{ to } 12 \text{ V}$	I ₇	_	_	2	mA


Notes to the characteristics

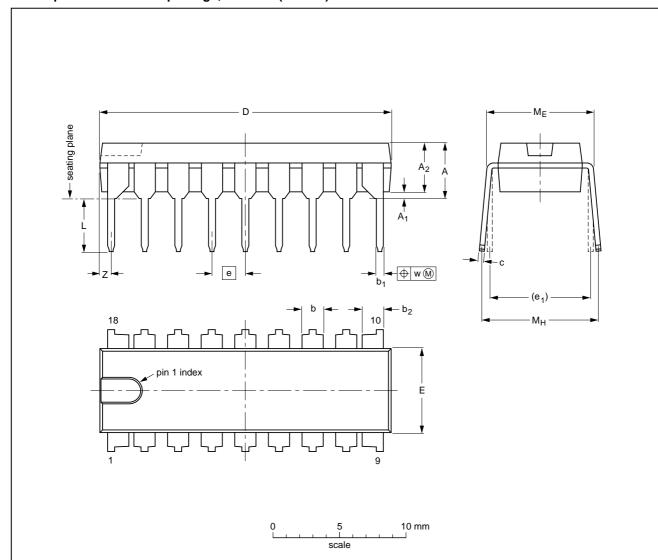

- 1. Signal with negative going sync; amplitude includes sync pulse amplitude.
- 2. Indicated is a signal for colour bar with 75% saturation, so the chrominance to burst ratio is 2,2:1.
- 3. Nominal contrast is specified as maximum contrast -3 dB and nominal saturation as maximum saturation -10 dB.
- 4. Cross coupling is measured under the following condition:
 - input signals nominal;
 - contrast and saturation such that nominal output signals are obtained;
 - the signals at the output at which no signal should be available must be compared with the nominal output signal at that output.
- 5. The signal-to-noise ratio is specified as peak-to-peak signal with respect to RMS noise.
- 6. When this level is exceeded the amplifier of the output signal is reduced via a discharge of the capacitor on pin 7 (contrast control). Discharge current is 5,5 mA.
- 7. These matrixed values are found by measuring the ratio of the various output signals. The values are derived from the matrix equations given in the section 'FUNCTIONAL DESCRIPTION'.

NTSC decoder TDA3567



NTSC decoder TDA3567

APPLICATION INFORMATION



NTSC decoder TDA3567

PACKAGE OUTLINES

DIP18: plastic dual in-line package; 18 leads (300 mil)

SOT102-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	1.40 1.14	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	0.85
inches	0.19	0.020	0.15	0.055 0.044	0.021 0.015	0.055 0.044	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.033

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT102-1					93-10-14 95-01-23	

NTSC decoder TDA3567

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

June 1986 15